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1 Supplementary Methods

1.1 Data Pre-processing

Data from The Cancer Genome Atlas (TCGA) [3] was collected for 558 breast cancer samples
using Copy Number Variation (CNV), RNA expression, and micro RNA expression. CNV was
summarized for 216 genes; RNA expression was measured for 12,434 genes; and miRNA expression
was measured for 305 genes. Examination of the scree plot for each data type resulted in selecting
AJIVE initial signal values of 25, 25, and 50 components for CNV, RNA, and miRNA, respectively.

RNA expression, DNase, and protein expression were collected for Yoruban lymphoblastoid cell
lines from Li, et al (2016). To avoid dealing with issues of missing data, only samples that had
all three data types observed were used in the analysis (n=55). Two samples were identi�ed as
outliers in the DNase data by examing the �rst two principal components; these were subsequently
removed from the analysis. DNase was measured for 699,906 genes; RNA expression was measured
for 13,967 genes; and protein was measured expression for 4,375 genes. The protein expression data
had a high number of missing values, and thus, only genes that were observed for all samples were
included in the analysis (2,435). To accommodate the large di�erences in dimensionality of the data
types, the DNase dataset was reduced to the top 5000 most variable genes, as recommended by
MOFA [20]. For consistency across methods, the reduced DNase dataset was used for all analyses.
Examination of the scree plot for each data type resulted in the selection of AJIVE initial signal
values of 3, 3, and 2 components for DNase, RNA, and protein expression, respectively.

2 Supplementary Figures

2.1 Motivation

Supplementary Figure 1: CCA on PCs of null Gaussian data returns correlations as high as 0.9,
for datasets of sizes that are typical genomics (e.g. 100 samples, 5000 genes).
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2.2 Large Sample Size - TCGA Data

Supplementary Figure 2: Sparse mCCA with experimental data: Side-by-side contribution plots
for gene expression versus miRNA using Sparse mCCA.
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Supplementary Figure 3: Sparse mCCA with experimental data: Side-by-side contribution plots
for CNV versus miRNA using Sparse mCCA.

Supplementary Figure 4: Sparse mCCA with experimental data: Side-by-side contribution plots
for CNV versus gene expression using Sparse mCCA.
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Supplementary Figure 5: MOFA with experimental data: Side-by-side contribution plots for gene
expression versus miRNA using MOFA.

Supplementary Figure 6: MOFA with experimental data: Side-by-side contribution plots for CNV
versus miRNA in experimental data using MOFA.
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Supplementary Figure 7: MOFA with experimental data: Side-by-side contribution plots for CNV
versus gene expression using MOFA.

Supplementary Figure 8: AJIVE with experimental data: Side-by-side contribution plots for gene
expression versus miRNA using AJIVE.
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Supplementary Figure 9: AJIVE with experimental data: Side-by-side contribution plots for CNV
versus micro RNA using AJIVE.

Supplementary Figure 10: AJIVE with experimental data: Side-by-side contribution plots for CNV
versus gene expression using AJIVE.
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Supplementary Figure 11: Sparse mCCA with experimental data: Comparison plots for CNV,
gene expression, and miRNA using Sparse mCCA.

Supplementary Figure 12: MOFA with experimental data: Comparison plots for CNV, gene ex-
pression, and miRNA using MOFA.
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Supplementary Figure 13: AJIVE with experimental data: Comparison plots for CNV, gene ex-
pression, and miRNA using AJIVE.

Supplementary Figure 14: Contribution correlations for AJIVE for each pair of data sets in an
analysis with increased ranks for CNV.
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Supplementary Figure 15: Pairwise plots of RNA contributions for a) Sparse mCCA vs. AJIVE,
b) MOFA vs. AJIVE, and c) MOFA vs. Sparse mCCA

Supplementary Figure 16: Pairwise plots of CNV contributions for a) Sparse mCCA vs. AJIVE,
b) MOFA vs. AJIVE, and c) MOFA vs. Sparse mCCA

Supplementary Figure 17: Pairwise plots of miRNA contributions for a) Sparse mCCA vs. AJIVE,
b) MOFA vs. AJIVE, and c) MOFA vs. Sparse mCCA
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Supplementary Figure 18: Plot of expression of ESR1 gene against the RNA contribution for a)
Sparse mCCA, b) MOFA, and c) AJIVE.
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2.3 Small Sample Size - Li et al, 2016

Supplementary Figure 19: MCCA with small-sample dataset: Contribution plots for DNase and
Protein expression using MCCA.
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Supplementary Figure 20: MCCA with small-sample dataset: Contribution plots for DNase and
gene expression using MCCA.

Supplementary Figure 21: MCCA with small-sample dataset: Contribution plots for protein ex-
pression and gene expression using MCCA.
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Supplementary Figure 22: MOFA with small-sample dataset: Contribution plots for DNase and
protein expression using MOFA.

Supplementary Figure 23: MOFA with small-sample dataset: Contribution plots for DNase and
gene expression using MOFA.
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Supplementary Figure 24: MOFA with small-sample dataset: Contribution plots for protein ex-
pression and gene expression using MOFA.

Supplementary Figure 25: AJIVE with small-sample dataset: Contribution plots for DNase and
protein expression using AJIVE.
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Supplementary Figure 26: AJIVE with small-sample dataset: Contribution plots for DNase and
gene expression using AJIVE.

Supplementary Figure 27: AJIVE with small-sample dataset: Contribution plots for protein ex-
pression and gene expression using AJIVE.
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Supplementary Figure 28: MCCA with small-sample dataset: Comparison plots for DNase, protein
expression, and gene expression using AJIVE.

Supplementary Figure 29: MOFA with small-sample dataset: Comparison plots for DNase, protein
expression, and gene expression using AJIVE.
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Supplementary Figure 30: AJIVE with small-sample dataset: Comparison plots for DNase, protein
expression, and gene expression using AJIVE.

Supplementary Figure 31: Comparison plots of contributions from Sparse mCCA for the 3 fold
analysis.
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Supplementary Figure 32: Comparison plots of contributions from Sparse mCCA for the 10 fold
analysis.
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2.4 Permuted Null Data

Supplementary Figure 33: MOFA with null data: Side-by-side contribution plots for miRNA versus
gene expression using MOFA.
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Supplementary Figure 34: AJIVE with null data: Side-by-side contribution plots for miRNA versus
gene expression using AJIVE.
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